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Defects and the central peak near structural phase transitions 
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The effect of defect or impurities on the static and dynamic response, near a displacive structural phase 
transition, depends on the symmetry and dynamics of the defect cell. It is shown that a small concentr~!i..Q.{L.QL" 
defect cells, in which the order parameter relaxes on a slow time scale betweendrff~ret;t'''~q~ivalent 
orientations, may account for the narrow "central peak" as well as for the temperature dependence of the 
"soft-mode" frequency in the perovskites near structural phase transitions. The case of a frozen defect cell is 
also discussed. Calculations are performed for the pure and impure systems using mean-field theory, and 
corrections are discussed using the universality hypotheses and renormalization-group calculations for dynamic 
critical behavior. 

I. INTRODUCTION has a finite linewidth corresponding to a relaxation 
rate r Qo of order 0.6 x 108 sec-\ at Tc+2 K. Very 

According to the simplest mean-field approxima- recently, direct measurements using neutron scat-
tion, a second-order displacive phase transition is tering with very high resolution have been pub-
9:..lways associated with a "soft phonon mode" of lished by Topler et al.,I4 which give a somewhat 
appropriate symmetry, i.e., a phonon whose fre- larger linewidth of 6 x 10- 7 eV (full width at half-

. quency goes to zero a:(T- Tc)l/2, as the tempera- maximum), corresponding to a relaxation rate 

. ture T approaches the transition from above.1
- s A 4.5 x 108 sec-I, at Tc+4 K. This number is re-

slightly more sophisticated analysis, which takes portedly consistent with independent measure-
damping into account, would suggest that the pho- ments by Mezei and HayterlS using the technique 
non becomes overdamped for T slightly above Tc ' of spin-echo neutron scattering. However; mea-
so that the spectrum revealed by inelastic neutron surements by Darlington et aL16 of Mossbauer 'Y 

or light scattering would show a single peak close rays scattered by the central peak indicate that 
to T c' whose width continues to decrease as T - Tc.3 the relaxation rate is smaller than 0.6 x 108 sec- l

, 

Experiments on a variety of materials are in for T::s T" + 6 K. We remark that the various esti-
marked contrast to this picture, however, as they mates of the central-peak width are three to four 
show the existence of a very narrow central peak orders of magnitude smaller than the width or the 
in addition to the soft phonon modes. In SrTi03, energy of the soft phonon mode, measured by Axe 
for example, a central peak has been observed6 -8 et aL8 

as far as 65 K above the transition temperature Several theoretical calculations have been car-
T c ~ 100 K. As T - T c' the weight of the central ried out, which have predicted the simultaneous 
peak grows relative to that of the phonon peaks, existence of a central peak and soft phonon modes 
so that for T - Tc ~ 10 K the majority of the total in certain models.17

-
27 (See discussion in Sec. 

weight is in the central mode. In fact, the weight VII B below.) However, none of these calculations 
in the phonon peaks, as well as the phonon fre- , ( has reproduced the observed characteristic that 
quency, remains finite as T - T c' whereas the Ill) the widfh of the central peak is very narrow com­
central-peak weight diverges. Qualitatively sim-/C~·*"j pared to the phonon widths, even at temperatures 
ilar behavior has been observed in a number-2!/ well above Tc, where the weight in the central peak 
other perovskites, including LaAI03,9an-d"KMnF3o

lO is small compared to that in the phonon peak.28 In-
Central peaks observed in a variety of other ma- deed, it seems to use to be very difficult to 
terials, including KH2P04 (KDP),l1 and Nb3Sn/2 imagine a model where this feature is reproduced, 
also resemble those in the perovskites. unless some extrinsic mechanism is introduced to 

One of the most important facts about the central gIve a frequency scale very small compared to the 
peak in SrTi03 (and other materials), that any intrinsic phonon frequencies. Consequently, one 
theory must explain, is its extreme narrowness. is led to explore the possibility that the central 
Even at the highest temperature observed, the mode may be due to the presence of impurities 
width was unresolvable in the neutron measure- or other defects. 
ments.6

-
8 Indirect measurements by MUller et Impurities were considered by Axe, Shapiro, 

al./3 via the EPR linewidth of a Fe3+ oxygen- Shirane, and Riste,8.23 who pOinted out that the 
vacancy complex, suggested that the central peak existence of an infinitely narrow central peak 
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could be explained by scattering from the tem­
perature-dependent static strain field surrounding 
an impurity, if the impurity is located in a posi­
tion whose symmetry allows it to couple linearly 
to the soft mode. (See also comments in Ref. 23.) 
It has often been assumed that an explanation de­
pendent on impurities or defects would be incon­
sistent with a finite linewidth for the central peak, 
such as that indicated by the EPR measurements. 
The purpose of the present paper is to point out 
that one should also consider a model in which the 
distortion in a defective unit cell may hop back 
and forth between positions which break the sym­
metry in opposite senses, a situation which we de­
scribe as a relaxing deject cell. This will lead to 
a central peak whose width is determined by the 
time scale of the hopping process, which might 
be of the order of 109 sec· 1 if the barrier to be 
surmounted is of the order of 10kB T c (~0.1 eV 
in SrTi03). We have constructed a simple mean­
field-theory solution of such a model, which dem­
onstrates many of the features of experiments on 
SrTi03 • Our results are similar in form to those 
of the phenomenological equations8,12,29 which are 
most commonly used to parametrize observations 
of central peaks. Furthermore, the concentration 
of defects necessary to account for the observed 
effects is estimated to be quite small-perhaps as 
small as 10· 5. 

It is worthwhile to recall, at this point, the dif­
ference between a displacive transition, which is 
the primary concern of this paper, and the case 
of an order-disorder transition, where the order 
parameter involves the reorientation of a mole­
cule .30 The latter description is applicable, for 
example, for the orientational transitions in the 
ammonium halides.31 

A mean-field theory of the order-disorder transi­
tion has been worked out by Yamada, Takatera, 
and Huber .32 When the molecular reorientations 
occur at an intrinsic rate which is very slow com­
pared to the phonon frequencies, the theory nat­
urally predicts a central peak in the neutron scat­
tering, due to the orientational disorder. In con­
trast to the experimental observations in SrTi03 , 

however, the theory does not predict a marked 
softening of any of the phonon frequencies in the 
order-disorder case. Also, since the atomic dis­
placements involved in a molecular reorientation 
are likely to be large compared to the thermal 
motions in the phonon modes, one would expect 
the integrated neutron scattering in the central 
peak to be large compared to the weight in the 
phonon modes, even at temperatures several times 
the transition temperature. Again, this contrasts 
with the neutron measurements in SrTi03 • Ac­
cording to the theory presented below, however, 

it will be seen that the presence of defects of the 
appropriate type may give some of the charac­
teristics of a slow orientational transition, in the 
vicinity of T c , to a system that would otherwise 
show the displacive behavior. 

The situation in crystals of the KDP type is 
different from that of the ammonium- halide type, 
since in KDP the quantum-mechanical tunneling 
of the protons introduces an energy splitting com­
parable to (but less than) the dipole-dipole inter­
actions that tend to order the proton. This situa­
tion is usually represented33 by an Ising model in 
a transverse field. In mean-field theory such a 
model has only a soft mode and no central peak. 
More realistic models34 for KDP couple the tun­
neling motion to the other modes of vibration in 
the crystal and obtain a central peak through 
piezoelectriC couplings. But as Cummins35 has 
emphasized, the observed central peak in KDP is 
also much too narrow to be thus explained. Hence 
defects are probably also necessary to explain the 
observations in this case. The calculations we 
present in Sec. II are probably relevant also to 
KDP since a soft acoustic mode plays a crucial 
role in the actual structural transition. 

In Secs. II and III, we describe a simple model 
for the relaxing defect cell and calculate the neu­
tron scattering line shape in a simple mean-field 
approximation. These results are compared with 
experiments on SrTi03 and related compounds in 
Sec. IV. In Sec. V we investigate a model with 
frozen defect cells, which is mathematically more 
complicated, and rather less likely to be relevant 
to experiments. A more complete classification of 
different types of impurities is presented in Ap­
pendix A. In Sec. VI we return to the Hrelaxing" 
case and discuss the modifications of the previous 
results when one attempts to go beyond the mean­
field theory. We also discuss the dynamics of the 
pure system in that section, using the ideas of 
universality and the renormalization-group anal­
yses for dynamic critical phenomena. We argue 
that a very narrow central peak is unlikely to oc­
cur in any simple model of a displacive transition 
in a pure system. 

II. MODEL FOR RELAXING DEFECT CELL 

To illustrate our ideas, we shall consider here 
a simplified model containing impurities or defects 
of a type that we describe as rela."Cing deject cells. 
(More particularly these are impurities of type 
Blb, according to the classification of Appendix A 
below.) 

We consider a model in which the atomic dis­
placements responsible for the phase transition 
are described by a single scalar quantity 1/J" for 
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each unit cell i. We suppose that any unit cell 
may contain a defect with probability c, or be 
normal, with probability 1- c. We consider the 
following classical Hamiltonian: 

"" [1 ,1.2 I 4 nl (d1/Ji)2 I J Je=~ 2: ai'i'i+ 4 b1/Ji + 2 dt - li<Pi 

- ~ L: J ij <Pi<PJ , 
i, J 

(2.1) 

where hi is an external field and m is an effective 
mass. The parameter a i can take on two possible 
values, 

at =an>O if i is a normal cell , 

at = ad < 0 if i is defective . 
(2.2) 

For simpliCity we assume that the mass m and the 
quartic coefficient b are the same for normal and 
defective cells, and that the coupling J iJ' which 
depends on r i - r J' the difference in the positions 
of cells i and j, does not depend on whether the 
cells are normal or defective. 

Let us define the Fourier transform 

J(Q) = LJijeiQ.<ri-rJ) . 
j 

(2.3) 

Suppose that the maximum value of J(Q) occurs at 
a wave vector Q = Qo, and set 

(2.4) 

In order for the pure material to have broken sym­
metry at T = 0, we must have 

u,n-Jo< 0 . (2.5a) 

We shall further assume that 

(2.5b) 

as is appropriate for transition in the "displacive 
limit."30 We shall see below that the pure ma­
terial has its phase transition at a temperature 
T~ of order an(Jo - an)/3b. 

If one neglects the coupling of a defect cell to 
its neighbors, then the defect cell is characterized 
by a double-well potential, with minima at 

Ih =±Cd= ± (lad l/b)1/2 . (2.6) 

In order for <Pi to pass from one well to the other, 
it must surmount a barrier 

~=t~/b . (2.7) 

We shall choose ~/Tc» 1, so that the parameters 
of the defect cell are in the range appropriate for 
a slow orientational transition, rather than a dis­
placive transition. This condition will be fulfilled 
if 

(2.8) 

Let us define the local field on cell i as 

Hi=h i + ~JiJ<PJ • 
J 

(2.9) 

For the normal cells, we shall assume an equa­
tion of motion of the form 

d
2

<pi b 3 ~ 
m df = Hi - an<p i - <P i - Y dt + 'TI i , (2.10) 

where Y is a phenomenological damping constant, 
which is intended to describe the effects of the cou­
pling of lPi to other degrees of freedom of the lat­
tice (the thermal reservoir), and 'TIl is the as­
sociated Langevin nOise, 

(2.11) 

For the defective cells, we shall be concerned 
with the rate at which lJ;i makes transitions between 
the two wells at ±Cd • (Oscillations within a given 
well will occur at a high frequency and will be 
relatively small in amplitude; such oscillations 
need not concern us here.) We write for the tran­
sition rate from <Pi to - <Pi 

wi=ve-HirbiIT, 

v=voe-t:.IT, 

(2.12) 

(2.13) 

where lJ;i = ±Cd and the attempt frequency Vo is ex­
pected to be of the order of 1013 sec- 1. (Note that 
the field Hi changes the barrier for hopping by the 
amount HilJ;i') 

III. MEAN-FIELD APPROXIMATION 

Let us examine the linear response of our sys­
tem to a time-dependent applied field 

(3.1) 

We consider the case T>Tc' so that (lJ;i) is zero in 
equilibrium. In the presence of hi we may write 

(lJ;i)=\}!nei(Q';i-wt) if i is normal, 

(lJ;i) =\}! dei(Q· ~i- wt) if i is defective, 
(3.2) 

where the angular brackets ( ••. ) imply an average 
over thermal fluctuations at all sites and an aver­
age over the impurity distribution at sites other 
than i. In the equations of motion (2.10) and (2.12), 
we now make a mean-field approximation-we re­
place Hi by its expectation value 

Hi - (Wi» =h, +((~ JiJlJ;J)) 

={h+[C\}!d+(1- C)\}!n]J(Q)}ei(Q·ri- wt> r 

(3.3) 

Here the double brackets refer to an average over 
the impurity distribution on all sites, including i 
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and j. In (2.10) we linearize using a Gaussian ap­
proximation, 

anlPi + blP~ - XnlPi , (3.4) 

where 

xn~an+3b(~)==an+3bo- , 
(3.5) 

0- ~ T /(an + 3bo-) . 

We therefore have for normal sites, 

(-~m-iyCA)+xn)(1/Ji)=«Hi» . (3.6) 

For defective sites, we have for the linear re­
sponse 

XdV· 1(-iw+v)(lPi)=«H,» , (3.7) 

x d = T I C~ « x n . (3.8) 

By using (3.3) we may write the solution of Eqs. 
(3.6) and (3.7) in the form 

'lin = (Xnn+Xnll)h , (3.9a) 

'lid= (Xdn+Xdd)h , (3.9b) 

where the 2 x 2 matrix X is defined by 

] (
- wam - iwy+xn- (1- e)J(Q) - eJ(Q) ) 

[X(Q,w) .1= . 
- (1- e)J{Q) - iWXdV· 1 +Xd- eJ(Q) 

(3.10) 

In the approximations made above we have aver­
aged over the impurity configurations by intro­
ducing, in effect, a two- component displacement 
field at each cell-one due to the normal cells and 
the other due to the defective cells. These are 
very similar to the approximations made by Walker 
for the spin-wave sp~ctrum of a mixed- crystal 
antiferromagnet (RbMn1.xNixF3), where they 
yielded excellent results.36 The approximation 
is qualitatively similar to the "average T -matrix 
approximation" in the theory of random systems .37 

Inelastic neutron scattering measures the dy­
namic structure factor 

S(Q,w)=(2T/w) ImX(Q,W) , 

X(Q, w) == (1- c)Xnn+ (1- e)AXnd 

(3.11) 

(3.12) 

where A is the ratio of the neutron form factors 
in the normal and defective cells. (We shall set 
A = 1 for simplicity.) The form factor SeQ) mea­
sured by a quasielastic scattering experiment is 
related to the static susceptibility Xs(Q)==X(Q,w=O), 
by 

SeQ) = f seQ, w) :~ = Txs (Q) . (3.13) 

The phase transition occurs when the static re­
sponse Xs(Qo) diverges, or 

(3.14) 

Where Jo==J(Qo)' For small concentrations e, this 
gives 

(3.15) 

Where 

(3.16) 

dTe ~ xn(xn - Xd) 
de XdX~ 

,_dXn / _ 3b 
xn = dT ~ - 2Jo - an . 

e 

(3.17) 

(3.18) 

In view of the inequalities (2.5), 
have 

(2.8), and (3.8) we 

dTe ~3To anladl 
de e (Jo - an)2 , 

which is positive and large compared to T~. 
For T near T c' and Q near Qo, we have 

- (Q) _ (1- e)xd+ eXn 
Xs - xdxn - eXnJ(Q) - (1 - e)xdJ(Q) 

~l/[x~(T- T c)+gq2J , 

where 

q=Q-~ , 
J(Q)~JO-gq2 , 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

and x~ is given by (3.18). This predicts that the 
quasielastic neutron scattering diverges near T e 

with the standard Ornstein- Zernike form 
In the limit v - 0, with w finite, we have 

- l-e 
X(Q, w) - mw2 _ iyw+xn- (1- e)J(Q) • (3.23) 

The right-hand side of (3.23) has poles at the 
"damped phonon frequencies" 

w; = - iy /2m ± (0; - y2/4rn2)1/2 , (3.24) 

where 

rnn; =xn - (1- e)J(Q) 

~gq2+x~(T_ Te+eT') , 

T' == xnJo/xdX~ . 

(3.25) 

(3.26) 

Note that 01' remains finite at Tc. We may also 
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note that T' is approximately equal to dT c / de, 
given by (3.17), so that T c - eT' is close to the 
transition temperature ~ of the pure system. 
It is easy to check that the phonon contribution 
to S(Q, w), obtained by insertion of (3.23) in (3.11), 
has total weight 

(3.27) 

which remains finite at T c. H the damping I' /2m is 
small compared to np , the phonon contribution is 
found to consist of two Lorentzian peaks, centered 
at w=±np, with half-widths equal to y/2m. If 
np -;;;.y/2m the phonons are overdamped; a single 
phonon peak is then seen which nonetheless retains 
a finite width at T c' 

The difference between (3.27) and (3.13) is made 
up by a narrow Lorentzian central peak, whose 
half-width r Q is given by 

r = (1 eJ(Q)x" ) 
Q-v -Xd[xn -(l-e)J(Q)] 

gq2 +x'(T _ T ) 
'" lJ n c (3 28) 
,...., gq2+x~(T_ Tc+eT') • 

[Note that - ir Q and w; are the three roots found 
by setting the determinant of (3.10) equal to zero.] 

For T - T c » eT', we may write the weight of the 
central peak as 

(3.29) 

The mean-field theory that we have carried out 
for T > T c can easily be repeated below T c' The 
principal change is that T - T c is everywhere re­
placed by 2 (Tc - T) in formulas (3.20), (3.25), and 
(3.28). Equation (3.27) applies as is. Thus we 
have also below T c a narrow central peak whose 
intensity diverges as T -Tc , Q -Qo, and a damped 
phonon contribution to S(Q; w) whose intensity and 
width remain finite. In addition, there will be an 
elastic Bragg peak, which only exists at Q = Qo' 

and elastic Rayleigh scattering, at finite values 
of q = Q - Qo' This last effect arises from varia­
tions in (<fJ) due to local variations in the denSity 
of impurities. For a random distribution of im­
purities, the Rayleigh scattering is given, for 
small q, by the formula 

S (Q)= (d(<fJ) dTc)2 
R e dT de 

~T- (Q) ~ dTc 3x" . 
Xs T de 2x c d 

(3.30) 

This scattering is in addition to the phonon scat­
tering and the central peak described above, whose 
combined weight remains equal to TXs(Q). Al­
though S R/T XS is proportional to the concentration 
of impurities, the remaining factors are quite 
large, and we estimate that the Rayleigh scattering 

below T c may be comparable to or even larger than 
T Xs for the parameters appropriate to SrTi03 • 

In the following comparison with experiment, 
however, we shall concentrate on T> T c. 

A schematic plot of [S(Q)]-l and [Sp(Q)]-I, for 
a system with relaxing defect cells, is shown in 
Fig. 1. 

IV. FIT TO EXPERIMENTS IN PEROVSKITES 

We have already seen from the previous discus­
sions that our simple model reproduces the qual­
itative features of SrTi03 • We shall now examine 
this somewhat more closely. In particular, we 
shall see that the neutron data in SrTi03 can be 
fit by our model with a reasonable choice of the 
model parameters, and we can estimate the con­
centration of defects necessary to explain the cen­
tral peak. 

Experimental results in SrTi03 and other ma­
terials have been rather well parametrized by the 
phenomenological equations8,12,29 

S(Q,w)o:(l/w)Im[w~- w2-iwr(w)]-l , (4.1) 

where 

(4.2) 

These equations lead to a narrow central peak, if 
v is sufficiently small. In fact, these equations 
coincide with our mean-field results if we identify 
lJ with the hopping rate (2 .13), and 

\ 
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" 
FIG. 1. Schematic plot of the inverse of the total 

(4.3) 

(4.4) 

form factor S(Qo) and of the finite-frequency "phonon" 
contribution Sp (Qo), for a system with ''relaxing defect 
cells," of type lb. The contributions of the Bragg peak 
and of the elastic Rayleigh scattering below Tc have 
been omitted from S(Qo). The dashed curve indicates 
[S(QO>r1 for the pure system. Deviations from straight­
line behavior arise from corrections to mean-field theory. 
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and 

(4.5) 

We shall next fit the parameters entering the 
mean-field theory to measurements on SrTi03 • 

For this purpose we shall describe the displace­
ments in cell i by a single scalar order parameter 
I/J" which represents a cooperative displacement 
of two oxygen atoms per unit cell, in the direc­
tions indicated in Fig. 2. We shall neglect the 
competing fluctuations in the other two planes, 
as well as the other vibrational degrees of free­
dom of the system. 

We first need to evaluate the three parameters 
an' b, and J 0- an that enter the description of the 
pure system. We use experimental values for 
Te~110 K, for d(Sl~)/dT~20 K, in the mean-field 
region above T e,s-8 and for the zero-temperature 
rotation38 of the Ti06 octahedra ~ 2° , together with 
the theoretical relations (3.16), (3.25), and 

(l/Ji?IT::O=(JO-an)/b. (4.6) 

[In deriving (4.6), we have simply minimized (2.1), 
neglecting the zero-point fluctuations of I/Ji'] We 
shall measure the displacement I/J in radians, so 
that m has dimensions of a moment of inertia. We 
take the inertial mass associated with the soft 

FIG. 2. Atomic positions in a (100) plane of SrTi03 
containing Ti (filled circles) and ° atoms (open circles), 
for T> Te' Strontium atoms and additional oxygens lie 
between these planes and are not shown. Arrows indicate 
displcement of oxygens for one of the six possible orien­
tations of the low-temperature phase. [Other possible 
orientations are the reverse of the indicated displace­
ments and corresponding displacements, and the cor­
responding displacements in the (010) or (001) planes.] 
An interstial impurity at site Vor V would either favor 
the indicated distortion or its reverse. An interstitial 
at site U, however, would not couple linearly to any of 
the possible distortions. 

mode to be equal to that of two oxygen atoms, and 
we use the Ti-O distance of 1.95 'A. Our results 
are an ~ 2.7 X 105 K/rad\ b ~ 4.6 X 106 K/rad\ and 
J o - a ~ 5.5 X 103 K/rad2

• With these values we find 

02 ~ 3.2 X 105 ca2(Te/T) 

x{1+2X10- 2[(T-Te)/Te]} K2, (4.7) 

where a is the ratio of Cd' the displacement in the 
defect cells, to the normal zero-temperature dis­
placement of 2°. 

The value 0 ~ 10 K, for SrTi03 has been ex­
tracted by Axe, Shapiro, Shirane, and RisteS-8 

from their results on the temperature dependence 
of the intenSity of the central peak and also from 
the temperature dependence of the soft-mode fre­
quency. Thus we get agreement with experiment 
if ca2 ~ 3.1 X 10- 4

• Comparing (2.6), (2.7), and 
(4.6), we find that in order to get a barrier ~ of 
0.1 eV between alternate positions of the order 
parameters in the defect cells, which would lead 
to a central-peak width of order 109 sec- l

, we 
need a ~ 5.1. We are thus led to estimate the 
defect concentration in SrTi03 as 

c ~ 1.2 x 10-5 . (4.8) 

Naturally, in view of the oversimplified model we 
have used, this should only be regarded as an 
order-of-magnitude estimate. 

A mean-field estimate of the effects of impuri­
ties presupposes that the distance between defects 
is equal to or smaller than a few times the value 
of the correlation length for the pure system, at 
the transition temperature of the impure system. 
Using numbers of Ref. 8, we estimate this cor­
relation length as (g/m02)1/2 ~ 30 A."_ The mean 
distance between defects implied by (5.10) is 
~ 200 A, !towever, which suggests that the nec­
essary concentration of defects may be rather 
higher than 10- 5 • 

Equation (4.7) predicts a slow temperature de­
pendence for 02

, e.g., a decrease of 33% in the 
value of 02 as one varies T from Te+ 10 K to Tc 
+ 65 K. This variation has not been seen experi­
mentally. We feel that this discrepancy is probably 
not too significant, however, in view of the many 
approximations we have made. 

In LaAI03 , 02 is observed to be temperature in­
dependent within experimental error and has a 
magnitude3 ~ 10 (K)2. The other parameters 
are9,38 T; ~ 490 OK, zero-temperature distortion 
~6°, and dSl;/dT~8.5 for T>Te. We obtain 02 

= 1.88 X 105 ca2
, so that for ca2 ~ 5 x 10- 5 we get 

the observed 02. 
In order to establish whether defects are indeed 

responsible for the narrow central peak in the ' 
perovskites, it is important to search for specific 
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defects which strongly tend to stabilize domains 
of the low-temperature phase, and which con­
sequently tend to raise T c' The authors are not 
aware of any impurities or defects identified to 
date as having the necessary properties. 

V. "FROZEN" IMPURITIES 

We now turn to the situations in which the im­
purity-cell displacements cannot relax on any ex­
perimental time scale. (This is a defect in class 
2 of Appendix A, below.) A frozen defect cell may 
be realized within the model of Secs. II-IV if we 
choose the barrier tJ. in the defect cell to be 
;.? 50k

B
T c , so that v· 1 is longer than 1 year. Al­

ternatively, a frozen defect cell may occur if 
there is a frozen interstitial defect, in a site of 
sufficiently low symmetry. 

When frozen defect cells are present, we may 
.e the displacement field in any unit cell i, at 

a'particular instant of time, as the sum of two 
terms 

(5.1) 

where iPi is independent of time, while 6I/Ji has 
mean zero, and fluctuates about this mean value 
on a time scale of the order of the soft phonon 
frequencies. The neutron scattering structure 
factor S( Q , w) is then the sum of the two contribu­
tions: 

(5.2) 

The elastic scattering structure factor Se(Q), 
which gives rise to a central peak of zero width, 
is the Fourier transform of the time-independent 
expectation value «iJiiPJ»' wherejas S,(Q, w) is the 
Fourier transform of the time-dependent correla­
tion function «6I/Ji(t)oI/JJ(t'»). The inelastic scat­
tering is related to the dynamic linear response 
l' dion Xp(Q, w) in the usual way, 

(5.3) 

A quasielastic scattering experiment will measure 
a structure factor S( Q) which is the sum of two 
terms, 

where 

Sp(Q) = f Sp(Q, w) ~~ = TXp(Q) , 

Xp(Q) = lim xiQ, w) . 
"' .... 0 

A. Elastic scattering 

(5.4) 

(5.5) 

(5.6) 

We first consider a case where the impurities 
are sufficiently far apart so that they can be 
treated as isolated. Suppose that an impurity 

sits at a lattice site i, with its displacement 
frozen in one of the two values I/J i = ± Cd' The im­
purity exerts a direct field on other cells in its 
vicinity, given by 

(5.7) 

In a linear approximation, this will induce a dis­
placement in the nearby unit cells, whose Fourier 
transform is 

(5.8) 

where Xs (Q) is the static linear response of the 
pure system. To this must be added the contribu­
tion of the impurity cell itself, 

~o(Q)=±Cde·fQ·"i-i • (5.9) 

For Q close to Qo, and T close to T c, the quan­
tity J(Q)Xs(Q) is large compared to 1. Nonethe­
less, the integral over the Brillouin zone in the 
denominator of (5.8) is not expected to be large, 
and within the spirit of mean-field theory it is 
proper to neglect it entirely. [Note that [J(Q)d 3Q 
must vanish, since J ii =0.] Adding up the con- . 
tributions of the independent impurities, we find 
an elastic scattering 

Se(Q)=( 1~(Q)12):::::C[CdJ(Q)XS(Q)J2 • (5.10) 

This expression is equivalent to the formulas for 
impurity scattering given in Refs. 8 and 23. 

Note that Eq. (5.10) coincides with Eq. (3.29), 
derived for the mobile-impurity case, when T 
- T c » cT', provided we make the approximation 
J( Q) >:::;, J 0>:::;' xn• This is to be expected. Far from 
T c' or in the dilute limit, the interaction between 
the impurities can be neglected. Hence the central 
peak is the incoherent sum of the scattering from 
the field about each impurity, in the relaxing case 
as well as in the frozen case. 

B. Effect on Tc 

Close to the phase transition, it becomes of 
great importance whether or not the defect cells 
can relax. In the former case, the defect cells in 
a given region will tend to order themselves in 
such a way as to favor the same orientation of the 
order parameter. This leads to a stabilization of 
the low-temperature phase, and the enhancement 
of T c that we have noted previously. In the case 
of frozen impurities, however, this cooperative 
effect is absent; the impurities serve to increase 
fluctuations, and therefore to decrease T c' as the 
effective stiffness constant an + 3b(l/.'1) is increased. 
We may note, in hct, that the contribution to (1ft) 
computed from the linear approximation (5.10) 
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diverges strongly as T - T c: 

(~~>= f Se(Q) (~:~ a:(T- T C)-1/2 • (5.11) 

Thus we expect frozen defect cells to have a rather 
drastic effect on the critical behavior of the sys­
tem. 

The static critical behavior of a system with 
these types of impurity has been considered re­
cently in a renormalization- group analysis by 
Imryand Ma.39 (In the usual terminology, this 
is a system with "quenched impurities" coupling 
linearly to the order parameter.) Imry and Ma 
find deviations from the critical behavior of a 
pure system for any spatial dimensionality d less 
than 6. Although they have calculated critical 
exponents to lowest order in E: = 6 - d, these cal­
culations are not very helpful for d = 3. Further­
more, Imry and Ma point out that in a model where 
the order parameter has continuous symmetry, 
such as the Heisenberg model, the quenched im­
purities will destroy long-range order at any tem­
perature, no matter how low, for any d < 4. This 
may in fact be occurring in "nontransforming" 
samples of V3Si.40 This argument does not apply 
to the Ising model, or to a Heisenberg model with 
cubic anisotropy. Nonetheless, we may expect 
that frozen impurities will have a strong tendency 
to depress T c below the value for the pure sys­
tem. The dependence of the total scattering cross 
section S(Q) on T - Tc may also be very different 
from the pure system, close to Tc' 

c. Effect on phonon response 

In addition to the temperature dependence of the 
elastic scattering cross section, we would like to 
investigate the questions of the effect of impurities 
on the phonon frequencies and on -the total weight 
of the inelastic phonon scattering. 

Again it is clear that when the impurities are 
far enough apart, and T is well above T c' the ef­
fect of a frozen impurity must be the same as that 
of a relaxing defect cell whose hopping time is 
very slow compared to the phonon frequencies. 
In the spirit of the mean-field theory of the pre­
vious sections, we would estimate the effects of 
the frozen impurities by simply assuming that 61fJ f 
is constrained to be zero on the impurity sites, 
and assume that the dynamiC effective field on any 
other site is therefore reduced by the factor 1 - e. 
This will shift the phonon frequencies upwards, 
and decrease the response function XP by a small 
amount, proportional to the concentration c, which 
is the same as we have computed in Sec. ill.41 
Examination of the calculations of Sec. III will 
show, however, that this stiffening is a relatively 

small effect compared with the raising of T c by 
the defects in the relaxing case. In fact, we found 
that the temperature Tc- cT', at which [Xp(QO)]-1 
extrapolates to zero, is only slightly below the 
transition temperature T~ of the pure system, 
while T~ was much further below the actual tran­
sition temperature (i.e., T' ~ dT c ! de) . In the 
frozen case, however, the actual transition tem­
perature of the impure system will be below ~. 
Therefore, if temperature is measured relative 
to the actual transition temperature in each case, 
we expect that X; 1 for the frozen defect cells 
will be below the values in the relaxing case. 
(Compare Figs. 1 and 3.) If the two cases are 
plotted on the same absolute temperature scales, 
so that the curves match far from T e , then X;1 
will be higher for the frozen case in the viCinity 
of T c' At the present time it is not entirely clear 
whether X;1 will remain finite at T c, for the frozen 
case, as in a first-order transition, or whether 
X;1 will approach zero as some power of T c. It 
is also unclear how the ratio Sp(Q)!Se(Q) will 
behave.-

It is interesting to speculate on the frequency 
dependence of Sp(Q, w) for the frozen-impurity 
case. For temperatures some distance below 
T~, but still above the actual transition tempera­
ture, it seems reasonable to picture the material 
as a series of domains, with the orientation of 
the order parameter in any region determined by 
the orientation of the nearest impurity, or per­
haps by a small cluster of impurities. (Recall 
that we are discussing a situation in which there 
is a small denSity of impurities, each of which is 
strongly coupled to the local order parameter.) 
It seems plausible that below T~, the domain walls 

FIG. 3. Schematic plot of the inverse of the total form 
factor S(Qo), and of the inelastic contribution S/>(Qo), for 
a system with "frozen defect cells" of type 2. The dashed 
curve indicates [S(QO>r 1 for the pUre system. Dashed 
curve indicates possible temperature dependence of the 
squared phonon frequency w;. Curves in the region T 
< T~ should be regarded as highly speculative. 
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may become sharp on the scale of the domain size, 
and that within a domain, the magnitude of the 
order parameter may be roughly equal to its value 
in the pure system. If this is the case, we would 
expect to see a phonon spectrum characteristic 
of the pure material, which means that the phonon 
frequencies will rise and the corresponding neu­
tron scattering intensity decrease, as the tempera­
ture is lowered further. There would be an addi­
tional inelastic scattering, however, from motion 
of the boundaries between domains. This might 
well be an activated process whose frequency 
would decrease as T decreases. The structure 
factor S( k, w) would then consist of three parts: 
an elastic scattering peak, of zero width, whose 
amplitude diverges as T c is approached from 
above (assuming a second order transition); a 
pair of phonon peaks whose frequency at first 
decreases with decreaSing temperature, but then 
begins to increase before T c is reached; and a 
second central peak that separates from the phonon 
peaks and continues to frow narrower as Tc is 
approa.ched. It is also possible that in some cases 
the phonon peaks will be overdamped, which would 
complicate the identification of this situation. 

The authors are not aware of any experimental 
results which suggest that frozen defect cells, 
rather than relaxing defect cells, are responsible 
for a central peak in any material. Nonetheless, 
this possibility should be borne in mind, and fur­
ther theoretical and experimental investigation of 
this possibility would be worthwhile. 

VI. BEYOND THE MEAN-FIELD APPROXIMATION 

In order to obtain the results of Sec. ITI, we 
were forced to make a number of drastic simplify­
ing assumptions. Our simple mean-field theory is 
incorrect on two counts. First, we have not cor­
rectly treated the nonlinear interactions between 
thermal fluctuations, so that we do not obtain the 
proper critical behavior even for the pure sub­
stance. Second, we have not correctly treated the 
multiple scattering of phonons by the impurities, 
and we would not obtain a precisely correct phonon 
spectrum even for a model in which anharmonic 
forces could be neglected. In the present section 
we will discuss the degree to which we may have 
confidence in the qualitative features predicted by 
the mean-field solution. 

A. Dynamics of the pure system 

Our first concern is the extent to which the 
mean-field solution for the pure system is qualita­
tively correct. We shall argue that the mean-field 
'8OlJtlon is quite similar to what one would expect 
~,this system based on renormalization- group 

considerations and the universality hypotheses for 
dynamic critical phenomena, and therefore it 
seems very unlikely to us that an exact solution 
of the model without defects could reproduce the 
qualitative features of the central peak in SrTi03. 

Universality hypotheses state that the asymp­
totic critical behavior of a system is independent 
of most details of the Hamiltonian, and is deter­
mined by certain overall properties, such as 
spatial dimensionality and order-parameter sym­
metry,42 and (for dynamic properties) conservation 
laws and Poisson-bracket relations among the 
order-parameter and conserved quantities.43 Al­
though the universality hypotheses are by no means 
rigorously proved, they tend to be supported by 
numerous pieces of eVidence, including the sta­
bility of the renormalization-group results to 
small perturbations, results of high- temperature 
series expansions for models on various kinds of 
lattices, and experimentally observed similarities 
in the critical behavior of systems which are sup­
posed to fall in a given "universality class." 

Renormalization-group calculations, which have 
now been carried out for a large variety of dy­
namic systems, have been based for the most part 
on an expansion in the variable E: = 4 - d, where d 
is the spatial dimensionality. In addition, the 
calculations are carried out for continuum mod­
els, with weak quartic interactions. The predic­
tions of these calculations are reinforced, how­
ever, by their good agreement with Monte Carlo 
calculations and high- temperature series expan­
sions for the two- dimensional kinetic ISing mod­
e1.44,45 We may note that an Ising model is the 
extreme anharmonic limit of the phonon model 
of Sec. II, and is, in a sense, further from the 
models studied by the renormalization group than 
the displacive system. It also seems unlikely that 
the renormalization- group calculations should 
work at d = 2 and near d = 4 - E:, and yet be radical­
ly wrong at d = 3. 

According to the universality hypotheses for dy­
namic critical phenomena,43 we expect the asymp­
totic critical behavior of the pure system to be 
the same as that of a purely relaxational continuum 
model (time-dependent Ginzburg- Landau model) 
with energy conservation, such as has been studied 
by Halperin, Hohenberg, and Ma.46 They find a 
relaxation rate for critical fluctuations which we 
may write in the form 

(6.1) 

where Xs is the static linear response function, 
110 is a constant, and the exponent x is slightly 
greater than 1. The line shape for critical scat­
tering is Lorentzian for d - 4, but we expect to 
find deviations from Lorentzian behavior at d = 3 , 
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with increased weight in the wings of the line. 
The mean-field-theory predictions for the pure 

system may be obtained by setting the impurity 
concentration c equal to zero in the results of Sec. 
m. We see that the phonon peaks become over­
damped for T sufficiently close to Tc and Q close 
to Qo' There is then a single central peak whose 
width is given by 

(6.2) 

This can be fit neatly onto the asymptotic critical 
behavior (6.1) if 

1]o~y-l. (6.3) 

[More accurately, we should have 1]0 ~ y-1xr1, 
where Xo is the value of the Xs(Qo) at a temperature 
where deviations from mean-field exponents first 
become important.] This behavior is also in 
agreement with renormalization-group calculations 
of a damped phonon model by Murata.47 

For an Ising-like transition (n = 1), where the 
specific heat diverges, an alternate estimate of 
the constant 1]0 is suggested by the renormaliza­
tion-group analysis of Ref. 46. In the asymptotic 
critical region, the relaxation rate iWp(Qo) is ap­
prox,imately given by46,48 

. (6.4) 

where D T is the thermal diffusion constant at the 
temperature in question, and K is the reciprocal 
of the correlation length. U sing the notation of 
Sec. III, we may estimate the thermal diffusion 
constant outside the critical region. Since a typi­
cal phonon velocity is given by v=(g/m)1/2, and 
a typical phonon relaxation rate r-1 =y/m, we 
estimate49 

DT~ tv2 r = tg/y. 

In the mean-field region, we also have 

K2 = g-1[XS (QO)J-1, 

(6.5) 

(6.6) 

so that comparing (6.4)-(6.6) with (6.1), we would 
'. again estimate that 1]0 should have the order of 

magnitude of 1'-1. 

We emphasize that the relaxation rate for the 
pure system predicted by (6.1) with 1]0=1'-1, is not 
small compared to the soft phonon frequency ex­
cept very close to T c' For example, the predicted 
Width would be of order 1 meV for SrTi03 at 
T- Tc~ 10 K. This relaxation rate clearly has 
nothing to do with the observed central peaks, 
which are much narrower. 

It is interesting to note that molecular-dynamics 
calculations24 for a (pure) two-dimensional model 
of a system. near a displacive transition are in 
SUbstantial agreement with this picture. Although 
the phonon spectrum was found to have a number 

of interesting features worthy of further study, 
the dominant scattering for Q =Qo' and T slightly 
above T c ' may be described as a single over­
damped mode. Since the published results24 do 
not give the temperature dependence of the central­
peak width in the displacive case, we could not 
make a detailed comparison with (6.1) and (6.3). 
The magnitude of the relaxation rate seems to be 
in qualitative agreement with this estimate how­
ever. 

We also feel that the results of Aubry, ofKrum­
hansl and Schrieffer,26 and. of Varma27 for a one­
dimensional system lend support to our picture of 
relaxation in a pure system. The width of the 
central peak at low temperatures in their model 
may be written in the form 

(6.7) 

where v is a typical velocity of motion of a domain 
wall. The fact that r Qo becomes extremely small 
at low temperatures is simply due to the fact that 
the correlation length K-1 grows exponentially with 
l/T, in one dimension. (The velocity v is a much 
slower function of temperature.) The occurrence 
of the velocity v in (6.7) is a consequence of the 
peculiarity of these one-dimensional models, in 
which one of the solutions of the resulting non­
linear equations of motion has a stationary solu­
tion in the frame traveling with velocity v. In two 
and three dimensions such solutions are not ob­
tained (except possibly for very special kinds of 
nonlinearities). In three dimensions we might ex- . 
pect a diffusive motion of "domain wallS," just 
above T c' This would lead to relaxation rate of 
the form DK2 for T> T c' where D is a diffusion 
rate for a domain boundary, and we choose the 
domain size to be of the order of the correlation 
length K-1

• In the pure system, where there are 
no defects to pin the domains, we might expect 
that the thermal diffusion constant D T appearing 
in (6.4) is not a bad estimate for D. On the other 
hand, we may note that even if (6.6) is used, then 
roo will not be particularly small compared to the 
soft phonon frequency, if v is comparable to the 
sound velOCity. Molecular-dynamics calculations 
on one-dimensional systems25 are in general 
agreement with the analyses of Refs. 26 and 27. 

A number of authors17-23 have performed ap­
proximate microscopic calculations of one kind or 
another for three-dimensional (defect-free) mod­
els, in the hope of explaining the observed central 
peaks at structural tranSitions. We shall not dis­
cuss the merits of these various calculations here, 
but shall simply reiterate t11..'1.t.to the best of our 
knowledge, none (of these calculations have yielded 
a central peak that is sufficiently narrow to ex­
plain the observations in SrTi03 • 
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B. System with defects 

It seems clear that certain qualitative features 
of the mean-field solution for our model with re­
laxing defect cells are independent of our approxi­
mation-e.g., the simultaneous existence of a nar­
row central peak in S(Q, w) whose frequency scale 
is set by the hopping rate v, and a "high-frequen­
cy" part, whose frequency scale is set by the 
phonon frequencies. Some important quantitative 
features which will not be correct, however, are 
the precise behavior of the total weight Xs(Q) for 
T-T c and Q-Qo; the precise behavior of the 
central-peak width as T - T c; the exact shape and 
overall width of the phonon part; the precise 
amount of weight left in the phonon part [Le., the 
quasistatic susceptibility Xp(Q)]. 

These questions might be answered in part by a 
more realistic treatment of the phonon system. 
(For example, a self-consistent phonon approxi­
mation,50 taking proper account of the root-mean­
square fluctuations from all the phonon modes 
throughout the Brillouin zone, might give consid­
erable improvement over the approximations of 
Sec. III, for the transition in the pure system.) 
Similarly, the scattering of the phonons by the 
defects might be better treated by a more sophis­
ticated approximation, such as the coherent-po­
tential approximation.37 Alternatively, we may 
also gain some insight into these problems by 
comparing with renormalization-group calcula­
tions, which should describe the asymptotic be­
havior sufficiently close to T c. 

We shall review here some of the relevant re­
sults of renormalization-group calculations, for a 
system with defects of type 1 or 3 according to the 
classifications of Appendix A. The case of a sys­
tem with "frozen defect cells" (type 2) was dis­
cussed in Sec. V, and will not be included here. 

C. Static properties 

The first of the questions posed above, the be­
havior of Xs(Q), has been studied rather extensi~ ... 
ly in the recent past, using renormalization-group 
techniques. Here it is necessary to distinguish 
the "completely mobile" cases (types 1a and 3b) 
from the "trapped" cases (1[) and 3[». (See Table 
1. According to the terminology current in the 
renormalization-group papers the trapped cases 
would be classified as "quenched impurities, with 
a quadratic coupling to the order parameter. "51,52) 
It should make no difference for the ultimate 
critical behavior of Xs whether the defect unit cells 
are weakly perturbed (3a, 3b) or strongly per­
turbed, as in the relaxing cases (1a, 1b). 

The completely mobile case is relatively simple. 
The impurities cause a shift in T c ' but no change 
in the asymptotic critical behavior of Xs(Q) rela­
tive to that of the pure system, provided that 
T - T c is corrected to refer to measurements at 
constant chemical potential rather than constant 
impurity concentration. Thus, for a system with 
a scalar order parameter, we expect Ising-like 
behavior42 [e.g., Xs(Qo) a: (T- T c>-1.25]. In-SrTi03 , 

the order parameter has six possible orientations, 
which would be classified as a Heisenberg-like 
system (n =3) with strong cubic anisotropy [Le., 
terms of the form E!=l 4;; and E!=l (qalfJa)2]. Ul­
timately this should lead to Heisenberg behavior 
[e.g., Xs(Qo) a: (T - T c )-1.38]; however, the cubic 
anisotropy is only weakly "irrelevant," and devia­
tions from Heisenberg behavior would not be sur­
priSing in any accessible temperature range.42 

The presence of "quenched" impurities (cases 
1b or 3b) is expected to modify the asymptotic 
critical behavior, in the case of a scalar order 
parameter. The renormalization-group leads to a 
fixed point whose exponents differ from the ordi-

TABLE 1. Classes of defect cells. 

Class 

1 

la 
Ib 

2 
3 

3a 
3b 

Description 

"Relaxing defect cells"-asymmetry is strongly favored 
but equilibrium is maintained via slow hopping between 
the various orientations 

"Mobile"-defect may hope from cell to cell 
"Locally relaxing"-defect trapped in given unit cell 

"Frozen" defect cell-asymmetry is frozen in 
Weakly perturbed defect cell-symmetry is maintained 

via rapid vibration between possible orientations 
"Mobile"-defect hops from cell to cell 
"Quenched defect"-defect trapped in a given unit cell 
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nary ISing values.51,52 However, the "crossover 
exponent" is given by the specific-heat exponent 
a, which is small (a ~ i). Thus the system would 
probably always be fairly close to the pure-Ising 
fixed point, over any accessible temperature 
range, if the impurity concentration is small. 

In the Heisenberg or cubic case, the asymptotic 
behavior depends on the symmetry of the site, or 
group of sites, at which a given impurity is trap­
ped. If the impurity site has the full cubic sym­
metry, the crossover exponent is again a, which 
is now negative, so that the impurities are ir­
relevant. If the impurity introduces a local "uni­
axial" anisotropy, e.g., a perturbation of the form 
7./J~ + ~S - 27./J~, the crossover exponent is positive, 
and the asymptotic critical behavior is changed by 
the presence of the defects. It has been suggested52 

that some form of "smeared" transition will re­
sult in this case. 

It may be noted that lines of defects, or other 
strong spatial correlations among defects, may 
also enhance the importance of defects, and will 
also lead to smearing of the transitiQIl. 

D. Dynamic properties 

Grinstein, Ma, and Mazenk~~/have given a re­
normalization-group treatment of the critical 
dynamics of a model with quenched impurities, 
which couple quadratically to the order param­
eter and do not break the symmetry of the high­
temperature phase. They have developed recur-

~
. n relations analogous to those employed in Ref. 

~6 to obtain results correct to lowest order in 
- d for systems without impurities. They find a 

relaxation rate for the order parameter of the 
same form as (6.1), with an exponent x which is 
again close to 1. The precise value of x may differ 
somewhat from that in the pure case, as was ob­
served for the static critical exponents. 

Invoking the universality hypothesis, we would 
like to apply these results to our cases 1b and 3b, 
where trapped defects are present. For the case 
of weakly perturbed defect cells, 3b, we would 
estimate 110 ~ y -1, as in the pure case. For the 
strongly coupled case of trapped relaxing defect 
cells, 1b, we could apply the results of Grinstein 
et ale to the width of the central peak. By matching 
onto the mean-field results of Sec. III, we esti­
mate 

x~ 1, 

(6.8) 

(6.9) 

110 ~ lIXs(Qo, Tc + cT'). (6.10) 

Unfortunately, these results do not provide 
answers to some of the most interesting questions 

in the strongly coupled case (1b)-the questions of 
the weight and shape of the (nondiverging) phonon 
contribution to S(Q,w). At this point we can only 
offer a guess as to the best way to extend the re­
sults of Sec. m. The simplest estimate for the 
phonon contribution to the susceptibility is 

x/Q, T)~ Xs(Q, T+ cT'), (6.11) 

where cT' must be fit experimentally, if neither 
c nor T' is known precisely. Further, we propose 
that the characteristic phonon frequency may be 
approximated by the form (3.24) with 

(6.12) 

The critical dynamiCS of a system with mobile 
defects (1a and 3a) may also be discussed USing 
the renormalization group. From the point of view 
of the universality class expected for the ultimate 
critical behavior, in the limit T - T c' these cases 
should be described by the model used for the pure 
system, model C of Ref. 46. The relevant con­
served field is now the local concentration of 
impurities, rather than the energy density. Inso­
far as the diffusion rate for impurities is very 
slow compared to the relaxation rate for the order 
parameter, we are forced to consider the case 
where the parameter Mo of Ref. 46 is equal to 
zero. In this limit one encounters difficulties in 
applying the renormalization group-the usual 
recursion relations are probably not correct to 
lowest order in 4 - d. (These problems are dis­
cussed more fully in Ref. 48.) The overall be­
havior of the system seems to be quite similar 
qualitatively to the quenched- impurity case, and 
we would propose that the same approximations 
be used to estimate the results; i.e., we would 
use Eqs. (6.7)-(6.11) to describe the case la, of 
mobile relaxing defect cells, while the weakly 
perturbed case 3a would be described by (6.1) and 
(6.3). 

When the spatial correlations or symmetry­
breaking properties of trapped defects are such 
as to lead to a "smeared transition, " as discussed 
above, there will be some temperature region 
above the "average" Tc in which relatively large 
regions of the system are frozen into the low­
temperature phase. We would expect to see a very 
narrow central peak in this temperature range 
even if the impurities tend to lower the average 

Tc' 
Note added in proof: Recent EPR results on I( 

Cr5 + substituted for As in KD2AsO" indicate that /I ' 
the ion undergoes a spontaneous displacement, 
together wHh a tilt in orientation of the paramag­
netic d-orbital, in a direction which couples lin­
early to the order parameter of the ferroelectric , 
transition (Tc:::: 140 K). The hopping time between / 

//' 

Cv&}doJ<; f/;l/;' 
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different configurations is found to be slower than 
10-8 sec for temperatures up to 300 K. [K. A. 
Muller and W. Berlinger (unpublished), and private 
communication] . 
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APPENDIX: CLASSIFICATION OF DEFECTS 

The manner in which an impurity or defect is 
coupled to the order parameter of a phase transi­
tion will depend on the site it occupies. At first 
sight, we may divide the impurity sites into two 
types: 

A: If the impurity sits at a site which properly 
breaks the symmetry of the high- temperature 
phase, it will couple linearly to the order param­
eter. There will then be an induced nonzero value 
of the order parameter in the neighborhood of the 
impurity, even above T c ' which will give rise to 
an elastic scattering peak whose magnitude in­
creases as T - T c' for wave vectors near the 
superlattice vector of the ordered phase. 

B: If the impurity sits in a site which has a high 
symmetry, then there will be no linear coupling to 
the order parameter, and the order parameter 
will not normally have a static expectation value 
above T c in the vicinity of the impurity. 

It may be noted that in SrTi03 any substitutional 
impurity or vacancy will fall into class B (see Fig. 
2). An interstitial impurity will also not couple 
linearly to the order parameter if it sits in a high­
symmetry site, such as U in Fig. 2. However, if 
the impurity sits at the interstitial sites V or V', 
then there will be a lin~~ coupling to the order 
parameter as indicated,~) 

The distinction between the two types of impurity 
sites may not be as clear cut as it seems, however. 
For example, an impurity at a symmetry site 
(type B) may so change the spring constants in 
its cell that the high- temperature phase is un­
stable, and the low-temperature phase is strongly 
favored. In that case there will be a spontaneous 
displacement of the atoms in the vicinity of the 
impurity into one or another of the possible con­
figurations of the low-temperature phase, which 
may be quite stable even above Tc-Le., the con­
figurations may be separated from the other pos­
sible positions by an energy barrier A large 
compared to kT. Furthermore, any impurity 
(type A) which likes to sit at the symmetry-break­
ing site Vof Fig. 2 can equally well sit at the 
physically equivalent site V'. If the barrier A for 
hopping from site V to site V'is not too large 

(A ~ 40k BT), then the impurity will spend an equal 
amount of time on each of the possible sites, and 
the time-averaged value of the order parameter 
will be zero. (Note that barrier A may be con- . 
siderably smaller than the barrier preventing an 
impurity from diffusing from one unit cell to the 
next.) 

It is clear that once one takes into account the 
possibility of impurity hopping, or spon~us 
symmetry breaking within the defect cell(~.~~he 
distinction between type-A impurities and type-B 
impurities is not in itself important. More impor­
tant are the time-dependent properties of the de­
fect cell as a whole. A more complete description 
would be as follows: 

A1: The impurity goes into a symmetry-break­
ing site but can hop to a site of the opposite sym­
metry within a time short compared to the dura­
tion of the experiment. 

B 1: The impurity goes a priori into a symmetric 
pOSition but changes the local spring constants so 
that spontaneous symmetry breaking takes place 
locally, with an energy barrier A that is large 
compared to T c' but small enough so that hopping 
between various configurations can take place dur­
ing the course of the experiment. Note that in this 
case it is not necessary for the impurity itself to 
hop. 

We shall group type Al and Bl impurities to­
gether into the class of "relaxing defect cells" 
(class 1). 

Continuing with our description of impurity cells, 
we list: 

A2: The impurity is "frozen" in a symmetry­
breaking position and cannot move to another site 
during the course of an experiment, for tempera­
tures of the order of T c' 

B2: Although the impurity occupies a symmetric 
site, it favors the low-temperature phase so 
strongly that the local spontaneous symmetry 
breaking is frozen for temperatures of the order 
of T c' and cannot readjust during the course of 
the experiment. 

We shall group together type-A2 and -B2 impur­
ities into the class of "frozen defect cells" (class 
2). 

Finally we may conSider defects such as follows: 
B3: The impurity occupies a symmetric site and 

either favors the high-temperature phase, or 
favors the low- temperature phase only weakly. 
The local symmetry, above Tc ' is broken only by 
fluctuations with the frequency scale of the pho­
nons, as in the pure system, and there will be no 
quasistatic expectation value of the order param­
eter in the vicinity· of the impurity. 

We shall classify this kind of defect cell as 
"weakly perturbed" (class 3). 
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We may further subdivide the relaxing and 
weakly perturbed defect cells (classes 1 and 3) 
into a "mobile" situation (denoted la and 3a), in 
which the impurity is able to diffuse freely from 
one unit cell to another during the course of an 
experiment, and a "trapped" situation (denoted 
lb and 3b), in which diffusion from cell to cell may 
be neglected. The distinction between mobile and 
trapped is unimportant in our mean-field-theory 
approximation; however, the two situations are 
expected to lead to differences in the precise form 
of the correlation functions very close to T c.' 
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